Prediction of Stock Returns Using Financial Ratios Based on Historical Cost, Compared with Adjusted Prices (accounting for Inflation) with Neural Network Approach

نویسنده

  • Elham Jabbari
چکیده

The purpose of this research is to predict stock returns and the purpose of the least squares regression and neural network approach is used. The potential financial ratios based on the historical cost and financial ratios based on Adjusted Cost predict stock returns are investigated. Independent variables and the dependent variable in this study and financial ratios and stock returns is for these purpose financial ratios for listed companies in Tehran Stock Exchange for the period 2007 to 2012 were collected. The results showed that the predicted stock returns based on financial ratios financial ratios adjusted based on the general price index and the use of neural networks better performance in comparison with the historical financial ratios and least squares regression approach in predicting stock returns has the variables are adjusted based on the general price index, variables, net profit margin, return on assets, current ratio, asset turnover ratio and fixed assets turnover ratio, respectively, are of the greatest importance and impact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

محتوای اطلاعاتی سود (زیان)‌های تعدیل شده بابت تورم

این تحقیق به بررسی مربوط بودن سود (زیان)‌های شناسایی نشده تورمی برای توضیح نوسانات بازده و محتوای اطلاعاتی اضافی سود (زیان)‌های تعدیل‌شده بابت تورم نسبت به سود(زیان)‌های مبتنی بر بهای تمام‌شده تاریخی در شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران می‌پردازد. به منظور استخراج اطلاعات تعدیل شده تورمی از صورت های مالی اسمی، از الگوریتم تعدیل تورم کانچیتچکی (2011) استفاده شده‏است. با بکارگیری رگ...

متن کامل

Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)

Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

P/E Modeling and Prediction of Firms Listed on the Tehran Stock Exchange; a New Approach to Harmony Search Algorithm and Neural Network Hybridization

Investors and other contributors to stock exchange need a variety of tools, measures, and information in order to make decisions. One of the most common tools and criteria of decision makers is price-to earnings per share ratio. As a result, investors are in pursuit of ways to have a better assessment and forecast of price and dividends and get the highest returns on their investment. Previous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014